Training drills in high performance badminton—effects of interval duration on internal and external loads

(Trainingsübungen im Hochleistungs-Badminton - Auswirkungen der Intervalldauer auf interne und externe Belastungen)

Purpose: The aim of the present study was to analyze the impact of interval duration on training loads and technical skill performance in high performance badminton drills. Methods: On three experimental days, 19 internationally ranked players (13 male: 22.7 ± 3.8 years, 180 ± 6 cm, 71.5 ± 6.1 kg; 6 females: 20.4 ± 2.5 years, 168 ± 4 cm, 59.8 ± 6.0 kg) completed one of three protocols (T10, T30, and T50) of a typical badminton specific drill, the so-called "Multifeeding" (the coach feeds shuttlecock without break in a random order) in a counterbalanced order. The protocols varied in interval duration (10, 30, and 50 s) but were matched for the rally-to-rest-ratio (1:1) and active playing time (600 s). Cardiorespiratory responses (portable spirometry, chest belt), energy metabolism (levels of blood lactate, La), rate of perceived exertion (RPE), player`s kinematics (Local Positioning System), and technical skill performance (video analysis) were measured. Results: Average oxygen consumption (T10 45 ± 6; T30 46 ± 7; T50 44 ± 6 mL min-1·kg-1), Energy expenditure (886 ± 209; 919 ± 176; 870 ± 206 kcal h-1), heart rate (164 ± 13; 165 ± 11; 165 ± 10 bpm) and RPE (16 ± 2; 17 ± 2; 17 ± 2) did not differ between the protocols. Respiratory exchange ratio (RER) and La significantly increased depending on interval duration (RER: 0.90 ± 0.05; 0.93 ± 0.03; 0.96 ± 0.04 and La: 3.6 ± 2.0; 5.6 ± 3.0; 7.3 ± 2.3 mmol l-1). Stroke frequency (SF; 0.58 ± 0.05; 0.57 ± 0.05; 0.55 ± 0.06 strokes·s-1) was similar while distance covered, and average running velocity were significantly lower for T50 compared to T10 (76 ± 17; 70 ± 13; 65 ± 11 m min-1). Moreover, jump frequency in T30 was higher than in T10 (6.7 ± 3.1; 8.8 ± 3.8; 8.5 ± 4.2 jumps·min-1), whereas differences in internal and external loads were not associated with changes in stroke precision (errors: 16 ± 6; 19 ± 4; 18 ± 4%; accuracy: 22 ± 6; 24 ± 8; 23 ± 8%). Conclusion: Anaerobic metabolic stimulus increases while running distance and velocity decrease, in case of longer interval durations. Even though there was no impact on stroke precision, extending the intervals beyond 30 s might impair external training load and skill performance. Consequently, interval duration should be defined carefully depending on the training goals.
© Copyright 2023 Frontiers in Physiology. EPFL. Alle Rechte vorbehalten.

Schlagworte: Badminton Training Belastung Belastungsgestaltung Belastungsdichte Leistungssport O2-Aufnahme Energie Herzfrequenz RPE
Notationen: Spielsportarten
DOI: 10.3389/fphys.2023.1189688
Veröffentlicht in: Frontiers in Physiology
Veröffentlicht: 2023
Jahrgang: 14
Seiten: 1189688
Dokumentenarten: Artikel
Sprache: Englisch
Level: hoch