The combined effect of training and match loads on injury risk in professional Australian footballers

Australian football is a dynamic team sport, which requires players to perform a large number of high-intensity efforts, combined with low-intensity activities throughout a match. Due to the complex and unique demands of the sport, players require an adequate training stimulus to develop and enhance the physical qualities required to succeed at the highest level. The ability to develop physically challenging but appropriate training at an individual level to 1) enhance the technical and physical qualities required, and 2) minimise the negative response to training (i.e. injury, illness, etc.) is a crucial task for practitioners involved in the preparation of elite players. The cost of injury in elite sport is substantial, with player availability seen as a key factor in the success or failure of any professional sporting organisation. It is typically suggested that teams with higher injury rates are more likely to be negatively impacted through poor team performance, compared with teams with lower injury rates. If injuries (particularly non-contact, soft-tissue injuries) can be considered ‘largely’ avoidable, then the role of workload becomes a key component in any sporting organisation to manage and minimise the risk of injury. The notion that workload and injury are interrelated is well established, yet the cost of injury remains significant at the professional level of Australian football. The overall aim of this program of research was to use scientific literature to understand the relationship between workload, injury, and performance in elite Australian football players and then improve the understanding of workload management and modelling of workload variables measured using a commercially available microtechnology unit. The program of research in this thesis first produced a comprehensive literature review to identify the current problem (s). The six subsequent chapters of original research built on the literature review to examine, in elite Australian football, (1) a previously suggested fitness-fatigue model on injury risk, (2) the importance of pre-season training on in-season availability, (3) the use of relative speed zones to model workload at an individual level, (4) a newly proposed fitness-fatigue model, (5) the differences between fitness-fatigue models in an applied setting, and finally (6) the application of a training monitoring system on injury rates. A previously-established monitoring tool, the acute:chronic workload ratio, was used to quantify the relationship between workload and injury in a cohort of professional Australian football players. The size of the acute workload in relation to the size of the chronic workload was calculated as an acute:chronic workload ratio. A very high acute:chronic workload ratio (i.e. > 2.0) for total distance was associated with a 5 to 8- fold increase in injury risk during the season. Similarly, players with a high-speed running acute:chronic workload ratio of > 2.0 were 5-11 times more likely to sustain an injury in both the current and subsequent week. These findings demonstrate that sharp increases in acute workload significantly increase the likelihood of injury in both the current and subsequent week.
© Copyright 2018 Published by Australian Catholic University. All rights reserved.

Subjects: sports game American football load load volume load intensity training competition relation injury damage
Notations: biological and medical sciences sport games
DOI: 10.26199/5b8de13ef6967
Published: Brisbane Australian Catholic University 2018
Pages: 250
Document types: dissertation
Language: Japanese
Level: advanced